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Abstract. It is shown that parametric linear programming algorithms work efficiently for a class of 
nonconvex quadratic programming problems called generalized linear multiplicative programming 
problems, whose objective function is the sum of a linear function and a product of two linear 
functions. Also, it is shown that the global minimum of the sum of the two linear fractional functions 
over a polytope can be obtained by a similar algorithm. Our numerical experiments reveal that these 
problems can be solved in much the same computational time as that of solving associated linear 
programs. Furthermore, we will show that the same approach can be extended to a more general class 
of nonconvex quadratic programming problems. 
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1. Introduction 

Kormo and Kuno, in a recent series of articles [9], [lo], showed that certain 
classes of nonconvex minimization problems can be solved by parametric convex 
minimization algorithms. 

The first class of problems to which they addressed is linear multiplicative 
programming problems defined below: 

minimize (cix + q)(c& + uz) 
subject to x E X 

where cl, c2 E Rn, gI, u2 E R1 and X C Rn is a polytope. The objective function 
of this problem is neither (quasi-)convex nor (quasi-)concave on X. Konno and 
Kuno [9] divided the feasible region into two subregions 

Xl = X f7 {x E R” 1 (c;x + q)(c;x + u2) 2 0} 

X2 = X fl {x E R” 1 (c;x + q)(c;x + q) zs 0} 

Journal of Global Optimization 1: 6.5-81, 1991 
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and showed that the associated subproblems: 

minimize (cix + q)(&x + cT2) 
subject to x E X1 

minimize (cix + ~r)(cix + c~) 
subject to x E X2 

can be solved by convex minimization algorithm. 
The key idea of their paper [lo] is to establish the equivalence of (1.1) to its 

master problem: 

and to apply a parametric linear programming algorithm to (1.2). Also they 
demonstrated that this algorithm can solve large scale linear multiplictive pro- 
gramming problems. 

In [9], they extended this idea and proposed a similar algorithm for solving a 
generalized linear multiplicative programming problem: 

minimize f(x) + (cix + ~r)(ctx + c*) 
subject to x E X (1.3) 

and a generalized linear fractional programming problem: 

minimize f(x) + i$z 12; 
1 1 (1.4) 

subject to x E X. 

where X is defined as before and f(. ) is a convex function. They assumed without 
loss of generality that 

(c$ + q) 2 0 , (c& + cT2) z= 0 , vx E x 

and applied a parametric convex programming algorithm to their master 
problems: 

minimize f(x) + E( c;x + cT1y + $ (cix + cT2y 
subjectto xEX, 630. 

and 

minimize 
subject to VEX, [ a0 
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Also they applied this algorithm to a special case of (1.3) in which J(. ) is a 
quadratic function and claimed that it is reasonably efficient. 

The purpose of this paper is to propose an alternative algorithm for solving 
(1.3) and (1.4) whenf( * ) . is a ffi ne or quadratic. It will be shown in Section 2 that 
the former problem can be reformulated as a linear programming problem 
containing a parameter in both its objective function and its right hand side 
vector. This reformulation enables us to construct a variant of parametric simplex 
algorithm. Section 3 will be devoted to the extension of the algorithm to the case 
where f(. ) is a convex quadratic function. It appears that our approach is simpler 
and at least as efficient as the ones proposed in [14]. In Section 4, we will show 
that the algorithm developed in Section 2 can be adapted to a generalized linear 
fractional programming problem (1.4) in which f(. ) is a linear fractional function. 

It should be emphasized that these nonconvex minimization problems have 
important applications in economics [6], bond portfolio optimization [S], and so 
forth. Readers are referred to [12,13] for advanced development in nonconvex 
quadratic programming problems. 

Results of numerical experiments of our algorithm will be presented in Section 
5. Finally in the Appendix, we will discuss the way to get around degeneracy. 

2. Parametric Simplex Algorithm for Minimizing the Sum of a 
Linear Function and a Linear Multiplicative Function 

2.1. PARAMETRIC MASTER PROBLEM 

Let us consider a special type of quadratic programming problem defined below: 

minimize G(x) = &x + crx. g’x , 

subject to Ax = b , x > 0. (2.1) 

where c, d, go Rn, A E Rmx”, b E Rm. Let us assume for simplicity that the 
feasible region 

X={xERniAx=b, x 2= 0) 

is non-empty and bounded. 
G(. ) is neither (quasi-)convex nor (quasi-)concave on X, so that it can have 

multiple local minima as demonstrated in [lo], [14]. To solve (2.1), we first 
introduce an auxiliary variable 

t=dx, 

and define a master problem: 

minimize F(x; t) = d’x + c. c’x 

subject Ax=b, xz=O, 
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where 

&,,i,, = min{ g’x 1 Ax = b , x 3 0} 

6 nlax = max{ g’~ 1 Ax = b , .x 2 0} 

Problem (2.2) has an optimal solution since its feasible region is nonempty and 
bounded. 

THEOREM 2.1. Let (x*, <*) be un optimul soZution of (2.2). Then x* is an 
optimal solution of (2.1). 

Proof. Obvious from the definition of (2.2). 0 

This reformulation leads us to apply parametric linear programming approach to 
solve (2.1). Let us introduce a class of linear programs: 

minimize (d + &z)‘x 

m9 
subject to ix = 

LltX = <*nin 

Fig. 1. The trajectory of x*(c). 
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Then X* = X( ,$*) is an optimal solution of (2.1). Figure 1 shows a possible 
trajectory of x*( 6). 

2.2. ALGORITHM FOR SOLVING THE MASTER PROBLEM 

Let X( i&) be an optimal basic soFtion of I’( &), where & E [ tmin, tm.J tnd let B 
be an associated basis matrix of A (we assume for simplicity that matrix A has full 
row rank). Also let 

1 ii = (B, N) , 

be the partition of a matrix and vectors corresponding to the basis matrix B. 
By using the familiar notations 

T=c;B-‘, u = d;B-1 , 
-t t cN=cjv -7TN, &=d;-uN, 

we obtain the optimal dictionary of P( to): 

minimize (dB + tocB)%( to) + (c?~ + toCN)‘xN 
subject to X~ = 6( &,) - RX,,, , 

XB20, XN30. 

Note that JN + toCN 2 0 and 6( to) a 0. 

THEOREM 2.2. B is un optimal busis of P( 8) f or all < satisfying the following 
conditions 

c&+&20, WI 

B-l ($0. 

Proof. See [3], [5]. 

The condition (2.3) generates an interval [q, /3r] where 

i 

al = max{ - Jj/<. 1 Ei > 0} 

& = min{ -aj/Cj 1 <. < 0} 

where Cj, dj’s are components of cN and dN. Also, by writing 

cl 

(2.5) 
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the condition (2.4) is equivalent to az s < < & where 

Hence B is an optimal basis of P( 6) for all ,$ E [ <, c] where - 

i 

e=m=iq, a21, 

Z=rrW&, P21. 

Note that [ [, i] is nonempty since & E [ <, ,$I. 
Let us impose here the non-degenergcy assumption (see Appendix for the 

detailed discussion about degeneracy). 

NON-DEGENERACY ASSUMPTION. The follow@ conditions hold for uZ1 

EO CE i twin > tmaxl 
til 6 c Z, 
(4 G # a2, Pl #P2. 

Case 1. i= PI. 
When < reaches 8, we obtain an alternative optimal dictionary of P(g) by 
choosing the nonbasic column vector (u:, gr)’ of 2 as an incoming basic vector 
where 

p1 = -iirE r . 

Alternative optimal dictionary of P(c) can be obtained by a primal simplex 
pivoting procedure. Note that we can find a pivot element since the feasible 
region of P(c) is bounded. Let B’ be the alternative optimal basis. 

s 

@ . . . . . . @ 

9 

0 - 

71 
Case 2 

Fig. 2. Optimal dictionary for P( $). 
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Case 2. g= &. 
At [ = i, we obtain an alternative optimal dictionary of I’(f) by performing a 
single dual simplex pivoting at the row s where 

Let B’ be the alternative optimal basis. Let [ ,$, $‘I be the interval of t in which B’ 
is optimal. 

At this juncture, we will prove the condition which guarantees the termination 
of our procedure. 

THEOREM 2.3. Zn case ,$ = & and all the element of the s-th row of the optimal 
dictionary of Z’( $) are nonpositive, then g = tmax. 

Proof. Let us write the s-th row of the dictionary as follows. 

By assumption bs( 6) < 0 for ,.$ > ,.$, so that I’( 6) is infeasible for < > ,$. By 
definition Z’( 0 is feasible for all ,$ cz [ tmin, &,,J, which proves ,$ = Emax. 0 

Starting from the optimal basis for I’( &in), we can generate a sequence of 
constants 

and a sequence of bases BI , Bz, . . . , Bk such that Bj is optimal for all P(t), 

t Ci [6Yj> tj+Il. 
Let 

and let 

is a global minimum of (2.1). Figure 4 shows the behavior of h(e), and the dotted 
line shows the value of hj associated with the interval [ cj, ,$‘j+I]. 

Algorithm 

Stage I. Solve a linear program 

minimize grx 

subject to x E X 
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and let ,&in = mm{ g’x 1 x E X}. Also let ,? be an optimal solution of P( ,$,,) and 
let B1 be an optimal basis of P( ,E&). l= 1. 

Stuge 2. Let x* = 2, h* = CQ, c$ = .&,. 
(1) Calculate g according 6 (2.5), (2.7) and (2.8). 
(2) Let 

zl = &3, + &&3Jm 

If u<u*, then let U* = u, xit = 6( $), xiZ = 0, where N[ stands for the 
matrix of nonbasic columns associated with Bt. 

(3) cuse 1. c = &. Obtain a new optimal dictionary associated with an alterna- 
tive optimal basis B*+* of P(i) by applying a primal simplex procedure at 
column r where & = - &/ET. Let t = t + 1 and go to (1). 

cuse 2. ,.$ = &. Obtain a new optimal dictionary associated with an alterna- 
tive optimal basis Bt+* of P(i) by applying, if possible, a dual simplex 
procedure at row s where & = -qs/ps. Let t = t + 1 and go to (3). If such 
a basis cannot be found, then terminate. III 

2.3. LINEAR MULTIPLICATIVE PROGRAMMING PROBLEMS 

Let us consider the special case of (2.1) in which d = 0. This is nothing but a 
linear multiplicative programming problem treated in [l], [2], [lo], [14]. In this 
case, problem (2.2) reduces to 

minimize 6. c’x 
subjectto Ax=b, x>O, 

dx= ‘5 > !Cmin =S 6 =S tmax ’ 

Thus it sufficies to solve two parametric right hand side linear programs 

and 

minimize c’x 
subjectto Ax=b, ~20, 

g*x= 6 > o~e~t*ax> 

maximize crx 
subject to Ax = b , x 2 0 , 

b= 6 7 .&“S{SO. 

Solving these problems is easier than solving (2.2). Also it looks simpler than the 
algorithm proposed in [lo]. 
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3. Parametric Linear Complementary Problems Associated 
with Generalized Linear Multiplicative Programming Problems 

The algorithm presented in Section 2 can be extended to a more general class of 
nonconvex quadratic programming problems: 

minimize G(x) = d’x + k xtDx + ctx. gtx 
(3.1) 

subject to Ax = b , x > 0 . 

where D is a symmetric positive semi-definite matrix and the feasible region 

X={xERniAx=b, xaO} 

is nonempty and bounded. It is now straightforward to see that (3.1) is equivalent 
to the following master problem: 

minimize F(x; t) = d’x + i X’DX + 6. ctx 

subjectto Ax=b, ~20, 

g*x= 6 > tmin =Z ‘5 =S tma,x ’ 

where 
&,,i,,=min{gtx]Ax=b, x20} 

!c maX=max{g’x]Ax=b, x30} 

Let LB chose ~5 CE L Emin 2 &,,axl an cI consider a quadratic programming problem: 

minimize F(x; &,) = d’x + i xrDx + &c’x 

Q(h) subject to Ax = b , x 2 0, 

gix = c& . 

Q( &,) is a convex quadratic programming problem and hence is equivalent to the 
following linear complementarity problem [4], [ll] . 

l 

D -At -g g -1 

A 0 00 

gr 0 00 0 

u*x=o, 7/y = 0 . 

(3.9 
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By using a standard method [ll], we can obtain an optimal basic solution 
w* =(x*, y*, z;, z;, u*, v *) of the systems of equations (3.2) such that 
(u*)‘x* = 0 and (u*)‘y* = 0. Let B b e an optimal complementary basis of (3.2). 
Also let We, VV~ be the associated basic and nonbasic variables, respectively. Then 
the complementary dictionary can be written as follows: 

wB=q+~&-ivwN, 

where q + J%& Z- 0. This dictionary is optimal for all < such that 

from which we obain an interval [t, l]. When ,$ reaches g, one of the basic 
variables, say wS becomes zero. We-will replace wS with a nonbasic variable We 
according to the following rule: 

(i) If ws = XL then We = Us, 
(ii) If ws = u/ then w! = xl , 
(iii) If wS = yr then We = Us , 
(iv) If ws = ur then We = y7 , 

(4 If ws = z1 then We = zZ , 
(vi) If ws = z* then We = zi . 

This exchange rule maintains the complementarity condition (3.3), so that we 
obtain a dictionary associated with a complementary basic solution of J!CP( ,$). 
Let B’ be the new complementary basis. Associated with B’, we calculate the 
interval [[‘, gr] . m which B’ is optimal (note that E’ = g). Choosing &, = tmin to 
start with; we will obtain a sequence of constants - 

and a sequence of complementary bases Bl, B2, . . . , Bk by avoiding cycling due 
to degeneracy. Let 

Note that x*( 6) is a linear function of ,$ in the interval [cj, ,$j+l], so that 
F(P( 0, c) is a quadratic function of t. Thus Fj can be calculated by elementary 
arithmetic. Obviously 

gives the global minimum of f(x) over X. Also x*( 6’) is an optimal solution of 
(3.1) where 

4. Minimizing the Sum of Two Linear Fractional Functions 

Let us consider here the following nonconvex programming problem [S] 
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minimize 
c;x + Ul 

F(X) = clX + ~ + 
d;x + Tl 

2 2 d;x + 72 (4.1) 
subjectto Ax=6, x30. 

Figure 3 shows the three-dimensional picture of the sum of two linear fractional 
function with two variables, which shows that F( * ) is neither convex nor concave. 
We will assume that 

c;x + CT2 > 0 , d;x+T2>0, VXEX, (4.21 

where 

X={x~Z?jAx=b, x20}. 

Let 
1 

” = d;x + r2 ’ 

Fig. 3. 3-dimensional plot of the fbnction F(x) of (4.1). 
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Then the problem (4.1) is equivalent to 

subject to Ax * y. - by0 = 0 , 

Y&Q + T*) = 1 2 
X20, yo?O. 

(4.3) 

Let 

y = yo-x . 

Then (4.3) is equivalent to 

minimize @(Y, Y0) = 
4Y + fllY0 
4Y + U2Ya 

+ &my + 71~0 

subject to AY - by0 = 0 

d;y + 72~0 = 1 , 

yso, yoao. 

Let 

cmin = inf{ ciy + c.yo { Ay - by0 = 0 , d\y + 7*yo = 1 , 

Y>O, YO~W Y 

c nmx = sup{c;y + oZyO 1 Ay - byi, = 0 , d;y + ~~~~ = 1 , 

YSO, YO~OI-. 

PROPOSITION 4.1. 0 < &.,,i,, s I&,,~~ -=c m. 
proof. If tmi,, G 0, then there exits (y, yO) 3 0 satisfying Ay - by0 = 0 such that 

ciy + crZyo G 0. By definition y,, = 1 /(d$ + +r2) for some x E X. Hence y0 > 0, so 
that 

A(y/yo)-b=O, c;(y/yo)+v+O, y/yozO. 

This is a contradiction to the assumption (4.2). Thus tmi” > 0. tmax -C CC can be 
proved analogously. cl 

Let us consider a parametric linear programming problem: 
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minimize ; NY + 5Yo) + KY + TIY”) 

subject to Ax - by,, = 0 , 

&Y + 72Yo = 1 > 
c:Y + flzY0 = 5 3 
Y==O, YO~O, 

5min G 5 s 5max . 

(4.4) 

THEOREM 4.2. (i) If y*, y,* is an optimaE solution of (4.4), then x* = y*lyz is 
an optimal solution of (4.1). 
(ii) If (4.4) has an unbounded solution, then (4.1) has an unbounded solution. 

Proof. Obvious. 0 

Minor modification of the algorithm in Section 2 works for this problem. 

5. Computational Experiments 

We will report the results of the computational experiments of the algorithm 
presented in Section 2. The program was coded in C language and tested on a 
SUN4/280S computer. 

We solved the problems of the form: 

minimize G(x) = d’x + c’x . g’x 

subjectto Axab, x20. 

where c, d, gE R”, A E R”““, b E R”. All elements of A, b, c, d and g were 
randomly generated, whose ranges are [O, 1001. This implies that every problem 
has a finite optimal solution, since its feasible region is bounded. 

Ten examples were solved for each size of the problems. Table I shows the 
remarkable performance of our algorithm. In fact, Stage 2 requires much less 
CPU time than Stage 1 (about 5% of Stage 1) for all problems. 

We also tested randomly generated problems of the form: 

minimize G(x) = d’x + $ 

Isubjectto Axab, ~30. 

where c, d, g E R”, A E R”““, b E R”. The algorithm similar to the one presented 
in Section 2 solved the above problem efficiently. Our numerical experiments 
reveal that these problems can be solved in much the same computational time as 
that of solving associated linear programs. 
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6. Appendix 

Here we discuss pivoting rules which avoid cycling in the case of degeneracy. 
First we construct a pivoting rule similar to the criss-cross method for Problem 

2.1. For any pair of vectors x = (xi, . . . , xk) and x’ = (x’,, . . _ , XL), we say x is 
lexicographically greater than or equal to x’, denoted by x ale1 x’, or x’ Slez x, if 
there exists i (1 <ick) satisfying that xj=x>, lS”j<i and xi>xi or x=x’. 
Given a scalar &, with &in S &, c &,,,,, our purpose is to obtain a basis satisfying 

Cd, + ‘iObc,> 5) slex 0 and (qj+5b~,,pj)BlexO, forallj, (6.1) 

where 0 = (0,O). If a basis satisfying (6.1) obtained, then g > &, and we will 
update &, by g. 

Given a basis B, we define the scalar A(B) as: 

A(B) = 
min 

{ { 
min I ‘j + 5O<I 

I’jl 
: j is nonbasic index , 

Idj+&Cjl>O and IC;>O , 
1 

min 
l 

14j + 5OPjl 

IPjl 
: j is basic index , 

Iqj+ topjI>O and IPjI>O II . 

Let Amin = 4 min{A(B): B is a basis of A”}. Then from the definition of A(B), 
Amin > 0. The definition of Amin directly implies the following lemma. 
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LEMMA 6.1. For any basis B of 2 and for any index j, 

(dj + Sf)ci? 'j> ==lex 0 if and only if Jj + (& + Amin)Cj 3 0 , 

(Sj + SOPjY Pj> slex 0 if and only if qj + (& + Amin)Pj 3 0 . 

By solving a linear program P( &, + Amin) with a suitable method, we obtain an 
optimal, infeasible or dual infeasible basis. In case an infeasible basis is obtained, 
then 6, = C,,,, as was shown in Theorem 2.3. Assume that a dual infeasible basis 
is obtained. It implies that P( & + Amin) is dual infeasible. If P( &, + Amin) is not 
infeasible, then P( &, + Amin) is unbounded and it contradicts with the bounded- 
ness of the feasible region of P( to + Amin). Thus P( &, + Amin) is infeasible and 
there exists an infeasible basis. Then we can show that 5, = &,,‘,,, in the same way 
as infeasible case. 

Here we show the advantage of the criss-cross method for solving P( & + Amin). 
When we apply a computer program for solving P( 5, + Amin), we have to 
determine the input size of Asi,. However, the above lemma indicates that the 
sign of each component of d, + (& + Ami,)CN and qN + (& + Ami,)pN can be 
checked by the lexicographical ordering between (Jj + &Ci, C;.), ( qj + &pi, pi) 
and 0. The criss-cross method is a simple finite algorithm for linear programming 
developed by Zionts [18] and extended to the setting of oriented matroid by 
Terlaky 1151, [16] and Wang [17], and it requires only the sign of each component 
of the tableaux. Thus the above lemma implies that we can apply the criss-cross 
method for solving P( 5, + Amin) without deciding the magnitude of Amin. Another 
advantage of the criss-cross method is that the initial basis need not be either 
feasible or dual feasible. In case p1 = &, the current basis (optimal to P( &)) is 
neither feasible nor dual feasible for P( &, + Amin). However we can take the 
current basis as an initial basis of the criss-cross method. 

Now we discuss the finite pivoting rules for the nonconvex quadratic program- 
ming problems treated in Section 3. in [7], Klafszky and Teriaky modified the 
criss-cross method for a quadratic programming problem with a symmetric 
positive semi-definite matrix. Similar to the ordinary criss-cross method, the 
modified algorithm requires only the sign of each component of the tableaux. This 
means that we can construct an algorithm for the nonconvex quadratic program- 
ming problems which avoids the cycling in the same way as discussed above. 

References 

1. Aneja, Y. P., Aggatwal, V., and Nair, K. P. K. (1984) On a Class of Quadratic Programming, 
EJOR 18, 62-70. 

2. Bector, C. R. and Dahi, M. (1974), Simplex Type Finite Iteration Technique and Reality for a 
Special Type of Pseudo-Concave Quadratic Functions, Cahiers du Centre d’Etudes de Recherche 
Operationnelle 16, 207-222. 

3. Chvatal, V. (1983), Linear Programming, W. H. Freeman and Company. 
4. Cottle, R. W. and Dantzig, G. B. (1968), Complementary Pivot Theory of Mathematical 

Programing, Linear Algebra and Its Applications 1, 103-125. 



PARAMETRIC SIMPLEX ALGORITHMS 81 

5. Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton University Press, Princc- 
ton, New Jersey. 

6. Henderson, J. M. and Quandt, R. E. (1971), Microeconomics, McGraw-Hill, New York. 
7. Klafszky, E. and Terlaky, T. (1989), Some Generalizations of the Criss-Cross Method for 

Quadratic Programming, Combinatorics 9, 189-198. 
8. Konno, H. and Inori, M. (1988), Bond Portfolio Optimization by Bilinear Fractional Program- 

ming, J. Oper. Res. Sot. of Japan 32, 143-158. 
9. Konno, H. and Kuno, T. (1989), Generalized Linear Multiplicative and Fractional Programming, 

IHSS Report 89-14, Institute of Human and Social Sciences, Tokyo Institute of Technology. 
10. Konno, H. and Kuno, T. (1989) Linear Multiplicative Programming, IHSS Report 89-13, 

Institute of Human and Social Sciences, Tokyo Institute of Technology. 
11. Lemke, C. E. (1965), Bimatrix Equilibrium Points and Mathematical Programming, Management 

Science 11, 681-689. 
12. Pardalos, P. M. and Rosen, J. B. (1987), Global Optimization, Springer-Verlag, Berlin. 
13. Schaible, S. (1974), Maximization of Quasiconcave Quotients and Products of Finitely Many 

Functionals, Cahiers du Centre d’Etudes de Recherche Operationnelle 16, 45-53. 
14. Swarup, K. (1966), Programming with Indefinite Quadratic Function with Linear Constraints, 

Cahier du Centre d’Etudes de Rescherche Operationnelle 8, 133-136. 
15. Terlaky, T. (1985), A Convergent Criss-Cross Method, Math. Oper. und Stat. ser. Optimization 

16, 683-690. 
16. Terlaky, T. (1987), A Finite Crisscross Method for Oriented Matroids, J. Combin. Theory. Ser. 

B 42, 319-327. 
17. Wang, Z. (1987), A Conformal Elimination Free Algorithm for Oriented Matroid Programming, 

Chinese Annals of Mathematics 8 B 1. 
18. Zionts, S. (1969), The Criss-Cross Method for Solving Linear Programming Problems, Manage- 

ment Science 15, 426-445. 


